
STO-MP-MSG-159 9 - 1 

Augmented Reality: Understanding Human Performance with Imperfect 

Systems by Using Virtual Simulations 

John Graybeal, Ph.D. 
KINEX, Inc. 

P.O. Box 3107, Manassas, VA 20108 

United States of America 

Todd Du Bosq, Ph.D. 
U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate 

10221 Burbeck Road, Fort Belvoir, VA 22060 

United States of America 

ABSTRACT  

Augmented reality (AR) displays are an emerging technology that provides computer-generated critical 

information to Soldiers, oriented towards enhancing Soldier decision-making capabilities and situational 

awareness. However, while AR technologies have great potential for enhancing Soldier effectiveness and 

safety, poorly designed AR technologies have the potential to distract, confuse, or mislead operators if they 

provide inaccurate information. A greater understanding of how accurate specific AR systems must be to 

improve human performance on various military tasks is still needed, as providing even slightly inaccurate 

information to a soldier may at times be worse than providing no information at all. Fortunately, simulations 

of AR technologies can be used to study aspects of its design and subsequent human performance to answer 

questions about AR accuracy requirements and other related human factors questions. These simulations can 

begin long before the first hardware prototype is finished, accelerating the technology’s progress towards 

maturity. In this paper, we describe ongoing efforts by the U.S. Army RDECOM CERDEC Night Vision and 

Electronic Sensors Directorate to simulate and understand human performance with AR and present some 

preliminary data from a target acquisition simulation. Our current research focuses on accuracy 

requirements for AR displays, and we discuss NVESD’s plan to leverage our simulation capabilities and our 

Perception Laboratory to test and define sensor- and task-specific AR accuracy requirements for electro-

optical and infrared sensor applications.  

1.0 INTRODUCTION 

The U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has been a 

world leader in the development and evaluation of electro-optical and infrared sensors for over sixty years, 

supporting technology applications ranging from vehicle mounted sensors, to weapon sights, to head-mounted 

displays. Digital technology has made it possible to improve the way we present sensor information to a human 

operator, and as such, augmented reality (AR) technologies have become an important area of research and 

development for NVESD. 
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Augmented reality technologies attempt to enhance human sensory experiences by inserting digital information 

into the user’s experience of the “real world,” [1]. While there are many different forms of AR, the present work 

focuses on the visual overlay of digital information onto the human visual field, either by augmenting a live 

sensor feed or utilizing a see-through display. There are many ways augmenting a Soldier’s visual field might 

assist with operational tasks. For example, AR symbology marking enemy units might improve target 

acquisition, AR labels identifying an object might facilitate object recognition, and AR waypoints indicating a 

navigation route might improve navigation efficiency. While the goal of improving situational awareness and 

military task performance by giving operators additional information is not particularly novel, the ongoing 

maturation of see-through and helmet-mounted display technologies, as well as the improvement of a host of 

supporting technologies (e.g., lightweight computer and graphics processors, information system networks, 

global positioning systems), has made it progressively possible to provide Soldiers with increasingly complex 

information in unobtrusive, mobile platforms.  

However, while AR technology is extremely promising, potential risks to human performance also deserve 

careful attention. For example, while AR technologies have the potential to direct the operator’s attention 

towards critical visual information, the AR system may also capture visual attention in undesirable ways, such 

that operators become inattentive to other critical information in the “real world” [2-4]. Likewise, while AR has 

the potential to decrease the cognitive load of operators by reducing the amount of information that must be kept 

in their memory (i.e., because that information is present on the display), increased cognitive load with AR 

systems has also been reported in the literature [5]. Thus, AR must be implemented carefully to avoid major 

risks to military personnel, or such technologies may do more harm than good. 

The purpose of this paper is to present NVESD’s ongoing research simulating AR use in a virtual environment, 

to present preliminary pilot data from one of the simulations, and to share how user feedback has been used to 

iteratively improve these simulations. We hope to demonstrate the importance of carefully studying human 

performance with AR and to demonstrate how simulations can be conducted early in the research process to 

inform device design constraints. 

1.1 AR “Red Team” Research Program 

One of NVESD’s current research efforts focuses on a single issue related to AR: detriments to human 

performance caused by inaccurate information. It is unreasonable to expect AR systems to provide perfectly 

accurate information to human operators at all times. AR errors may be caused by limitations of the AR and/or 

display technology itself (e.g., poor geospatial accuracy for displayed symbology), other technology passing 

inaccurate information to an AR system (e.g., an automatic target recognition system misclassifying an object as 

a threat), or other humans passing incorrect information to the AR system (e.g., an ally designating an 

inappropriate target). In all these situations, AR errors risk not only reducing any performance benefits the AR 

system is expected to bestow, but may actively harm performance to such an extent that performance with 

inaccurate AR is worse than performance with no AR. 

NVESD has historically leveraged its electro-optical and infrared modelling capabilities and human Perception 

Laboratory to define the necessary sensor characteristics for military operators to complete specific visual tasks. 

Likewise, we have recently begun to address similar questions specific to sensors that incorporate AR 

technologies as we attempt to define what ways and to what extent AR systems need to be accurate in order to 

improve performance. NVESD’s ultimate objectives of the AR “Red Team” research program are 1) to develop 

simulation capabilities and experiments that contribute to broad and general guidelines regarding AR system 

requirements and 2) to develop simulations and experiments capable of defining sensor-specific and task-

specific AR requirements, the results of which can be leveraged to inform the design of specific technologies 



STO-MP-MSG-159 9 - 3 

under development at NVESD. 

The current paper briefly presents three ongoing simulation experiments at NVESD designed to explore the 

effects of AR mistakes on human performance during different military tasks, as well as the specific 

methodology and initial pilot data from one of those simulations (i.e., target acquisition).  

1.1.1 Target Acquisition 

Our first simulation under the AR Red Team research program investigates the effects of AR spatial accuracy on 

target acquisition time. Specifically, we are studying the effects of angular error between the true target and 

displaced AR symbology indicating a target at multiple ranges.  Our primary research questions are 1) how 

much AR angular error is necessary to decrease performance below that of perfect AR guidance, and 2) how 

much error is necessary to decrease performance below that of unaided performance (i.e., performance with no 

AR guidance). To study the effects of AR errors as they relate to target acquisition, our simulation uses the Night 

Vision Image Generator (NV-IG) software to simulate the sensor feed of a third generation Long Range 

Acquisition Sensor (LRAS3). Sensor grips simulating the controls of the LRAS3 allow operators to scan a ring 

of virtual human targets, searching for a single human holding a weapon. Dependent variables of interest are 

target acquisition time and target acquisition accuracy. This experiment is the primary focus of the paper and 

will be described in greater detail (see section 2.0). 

1.1.2 Vehicle Identification 

Vehicle identification with thermal imagery has been a major area of past research for the NVESD Perception 

Laboratory [6-7], and our second ongoing simulation is designed to simulate AR systems assisting soldiers with 

thermal vehicle identification. Our primary research question is how much AR classification accuracy is needed 

at various ranges to improve or detract from human performance. In this simulation, Soldiers are asked to 

identify images of thermal vehicles generated in the NV-IG simulation software, while being aided by a 

simulated AR system. Each image has a vehicle identity displayed above the target vehicle, simulating the 

assistance of an AR system. Images are presented to Soldiers sequentially in groups, with each group containing 

an inherent accuracy level (e.g., 100%, 75%, 50%) of the simulated AR labels. Further, we are investigating the 

effects of these variables in both time-limited (i.e., five seconds to make a decision) and time-unlimited 

circumstances. Dependent variables of interest are vehicle identification accuracy and response time. 

Figure 1: Sample imagery from the thermal vehicle identification simulation. The yellow simulated 
AR label correctly identifies a T-72 tank (left) while the simulated AR label misidentifies the same 
tank in a second image (right). 

1.1.3 Navigation 

Our third simulation aims to assess the impact of inaccurate AR route waypoints on navigation performance. Our 



9 - 4 STO-MP-MSG-159 

initial, primary research question investigates whether subtle or severe AR mistakes are more damaging to 

navigation performance. If followed, severe AR errors may be more damaging to performance, but they may 

also be more easily detected and disregarded by operators. Throughout the simulation, Soldiers are tasked with 

navigating to a specific building via a specified route in a virtual city generated in NV-IG. Soldiers are instructed 

not to deviate from specified “safe” route, even though it may not be the most efficient path. The route is 

displayed on a static map of the area on a second monitor screen, which participants can rotate and reorient 

based on their current heading. Dependent variables of interest are time to reach the target destination, time spent 

outside the designated route, the number of incorrect turns made, and path efficiency.  

Figure 2: Sample imagery from the AR navigation simulation. Participants follow AR waypoints 
through a virtual city (left) while attempting to navigate a designated, safe pathway indicated on a 
map (right). 

1.2 Fidelity and Experimental Validity in an AR Experimental Context 

In each of these three simulations, we aim to realistically replicate the way an operator would receive and use 

information from an AR system to complete a task. The fidelity of any simulation, defined as “the extent to 

which the virtual environment emulates the real world,” [8], critically affects its usefulness. Fidelity refers to far 

more than the visual representation in a simulation (i.e., the extent to which the simulation imagery is 

aesthetically pleasing or realistic), as fidelity is a multidimensional construct [9]. In addition to the imagery, 

aspects of a simulation that correspond to reality may include presented stimuli and behavioural responses, 

operator muscle movements, interface controls, scenario context, etc. Not all of these aspects are equally 

important for a given simulation, as the purpose of the simulation determines which aspects are the most critical. 

For experiments simulating the cognitive use of AR information, the most important component of the 

simulation is the content of and the manner in which the AR information is presented to the user; experiment 

participants must use the AR information the same way they would in reality in order for the experiment to be 

valid. By maximizing the cognitive fidelity of an experiment, we can manipulate the AR information presented 

to participants in simple simulations and observe effects on performance likely to generalize outside the 

laboratory. In addition to presenting our methodology and preliminary pilot results of our target acquisition 

simulation, we discuss the ongoing, iterative process of improving the cognitive fidelity of the simulation based 

on user experiences.  
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2.0 METHODOLOGY 

2.1 Participants 

10 U.S. Army Soldiers were recruited through Headquarters, Department of the Army. The Soldier’s arrived for 

a one-week stay, participating in thermal vehicle identification training and other perception experiments in 

addition to the augmented reality simulation presented here. Soldiers’ ages ranged from 19 to 36 years old (M = 

28, SD = 6). Likewise, time spent in service of the military varied widely between participants (M = 7.7, SD = 

5.9). All research procedures were carried out under a protocol for human subjects research approved by the U.S. 

Army Medical Research and Material Command Institutional Review Board. 

2.2 Scene Generation 

We created a series of virtual scenarios where participants had to search for, detect, and acquire a human target 

who was holding an AK-47; each scene contained only one target. Virtual humans were arranged in a partial ring 

(i.e., arc) around the sensors location, so that each virtual human was equidistant from the sensor. The ring of 

potential targets covered a total area of 30° (15° on either side of the sensor’s initial orientation), regardless of 

target range. In order to ensure our experimental design was sensitive to the effects of AR error, human targets 

were placed close to each other, exactly one meter apart. This ensured that when the AR symbology was 

inaccurately displaced, the operator would need to conduct visual work in order to find the target. In other words, 

the AR system never made mistakes where the correct target, and only the correct target, would appear in the 

sensor’s field of view, despite angular error being present. The virtual humans were inserted into a flat, open 

terrain, such that scenes were devoid of buildings, vegetation, and other visual clutter. Participants had a 

maximum of 60 seconds to find each target. 

Figure 3: Sample scenes from the target acquisition simulation. The scenes display an arc of virtual 
humans, and participants must align the center targeting reticle on the person holding the weapon. 
In the left image, the AR symbology correctly designates the target. In the right image, the AR 
symbology contains angular error, and is displaced slightly from the true target. Note that the AR 
symbology both appears on screen above the target and on the sensor’s situational awareness ring. 

2.3 Experimental Design and Hypotheses 

We studied the effects of several independent variables on target acquisition performance. First, we studied the 

effects of AR accuracy. Participants experienced six categorical levels of the AR performance: no AR (i.e., a 

control condition where participants had to complete the task unaided by any AR system), perfect AR (i.e., no 

angular displacement between the AR symbology and the true target), and four levels of imperfect AR, 

consisting of 1°, 2°, 3°, and 4° of angular error between the AR symbology and the true target. We hypothesized 
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that greater amounts of AR error would increasingly impair target acquisition performance. 

Second, we explored the effects of distance between the sensor and the target (i.e., range). We studied the effects 

of three ranges: a “Close” range (where the target was easily visible without engaging the sensor’s optical 

zoom), an “Intermediate” range (where the target was visible without engaging the optical zoom but optical 

zoom greatly aided target acquisition), and a “Distant” range (where the target was not detectable without 

engaging optical zoom.) We hypothesized that target acquisition would take longer with longer ranges. In 

particular, we wanted to explore the interaction between range and AR information: for example, while 1° of AR 

angular error might not impair performance at the “Close” range, it might cause sufficient harm at the “Distant” 

range. 

Targets were placed at fixed locations so that the relatively slow sensor rotation speed would not confound target 

acquisition time across AR conditions. A total of eight target locations were used, with targets being located at 

3°, 4.5°, 6°, and 7.5° to the left and right of the sensor’s starting origin. We removed the sensor’s azimuth 

heading to prevent participants from learning these locations, and piloted the experiment to ensure the target 

locations could not be memorized. A target was located at each of these locations, for each range, for each AR 

condition. 

Consequently, the total number of target acquisition trials per participant was 144 (6 AR conditions by 3 Ranges 

by 8 target locations = 144). These trials were subdivided into eight blocks of 18 trials so that participants could 

periodically take breaks; each block was counterbalanced to contain three trials each of the six AR conditions. 

Each participant took each block, and each trial within a block, in a randomized order. 

2.4 LRAS3 Controls and Sensor Targeting Reticle 

We used highly realistic LRAS3 controller grips, developed previously at NVESD, as the human/computer 

interface. Component buttons and button layout on the simulation controller are nearly identical to the real 

LRAS3 controls. The primary divergence between the actual sensor and the simulation controller is the method 

of rotating the sensor’s field of view (FOV). The LRAS3 sensor is typically tripod- or vehicle-mounted and is 

physically rotated by the sensor grips. In contrast, the simulation controller is mounted to a stationary desktop in 

front of a computer monitor; pushing on the grips, either to the left/right or up/down, causes the sensor to rotate 

at a speed proportional to the strength of the push. As no absolute controller sensitivity exists for a sensor that is 

physically rotated, the controller’s sensitivity was set low enough to allow operators to easily acquire the 

“Distant” targets (i.e., too much sensitivity makes it difficult to acquire small, distant targets). 

In general, the controls for the LRAS3 simulation were greatly simplified compared to the actual controller to 

facilitate rapid training. Soldiers could engage the optical zoom of the sensor and used the “Laser Range Finder” 

button to designate targets. The “Menu” button was repurposed to control a simple dialogue box that appeared 

after a Soldier designated a target, allowing them to “Confirm” or “Cancel” the designated target. All other 

LRAS3 buttons were disabled. 

The LRAS3 displays a different targeting reticle depending on whether or not the optical zoom is enabled; we 

modified each to include a single dot at the very center of the screen. Participants were instructed to align that 

targeting dot with the virtual target they wished to designate. 
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Figure 4: Perception Laboratory facilities and experimental configuration. The Perception 
Laboratory has 10 workstations for simultaneous testing (left). LRAS3 controller grips were 
mounted to the desk and positioned in front of large, high definition 4K computer monitors (right).  

2.5 Procedure 

Participants were first given a group PowerPoint presentation explaining the AR simulation instructions and 

LRAS3 controls. Participants were instructed to acquire the targets as quickly as possible. They were also told 

that an AR system would attempt to help them during the target acquisition task, but that it would not always 

function perfectly.  

Participants then participated in training scenarios to learn the sensor controls and to practice acquiring targets. 

The training consisted of three trials at each of the three ranges for each of three following AR conditions: No 

AR, Perfect AR, and AR with 4° angular error (27 trials total). These three AR conditions were selected because 

they covered the full range of AR performance. Once participants completed the training, they began the 

experiment. While participants could take a break between any of the eight blocks of trials, they were asked to 

take a ten minute break halfway through the experiment to alleviate fatigue. The instructions, training, and 

experiment collectively took approximately 90 minutes. At the completion of the study, participants were 

debriefed and several took the opportunity to provide informal feedback regarding the simulation. 

2.6 Data Analysis 

Data analysis was conducted using the R Project statistical analysis software. Hierarchical linear regression 

models [10] were used to analyze human performance data (target acquisition time and target acquisition 

accuracy), using Satterthwaite’s method of approximating degrees of freedom for the calculation of t and p 

values [11]. Nested-model comparisons were used to produce interpretable main effects (due to the presence of 

categorical variables with more than two levels in the primary regression analyses). Two regressions were 

planned per dependent variable to answer our primary research questions: the first comparing all AR conditions 

to Perfect AR and the second comparing all AR to No AR assistance. Additional post-hoc regressions, subsetting 

the data at various ranges, were conducted to further test hypotheses at specific ranges; the Bonferroni correction 

was applied to both the dual regression approach (α=.025) and post-hoc analyses (α=.008) to control the rate of 

Type 1 inference errors. 

As target acquisition accuracy is a binary variable, logistic regression was used to analyse it. Target acquisition 

accuracy was calculated purely in terms of angular error between the true target, the sensor, and the target 
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designation pathway through three-dimensional space indicated by the participant; vertical accuracy was 

ignored. A response was scored as correct if the designated path through three-dimensional space was closer to 

the true target than any other virtual human.  

3.0 RESULTS 

3.1 Target Acquisition Time 

A nested model comparison revealed a significant main effect of range on target acquisition time X2(1, N = 10) = 

247.02, p < .001, such that target acquisition time increased at longer ranges, as predicted (“Close”: M = 11.31s, 

SD = 6.48s; “Intermediate”: M = 14.48s, SD = 7.54s; “Distant”: M = 20.83s, SD = 12.97s). Likewise, a nested 

model comparison revealed a significant main effect of AR condition X2(5, N = 10) = 97.42, p <.001. Target 

acquisition times were fastest with perfect AR and 1° angular error, increased with increasing amounts of 

angular error, and were slowest with No AR (see Table 1). Likewise, variance in target acquisition times 

increased with increasing amounts of angular error, with No AR representing the least consistent acquisition 

times and Perfect AR representing the most consistent acquisition times. 

Table 1: Mean Target Acquisition Times by AR Error Condition 

AR Error Condition Mean (s) Standard Deviation (s) 

Perfect AR 13.37 5.35 

1° Angular Error 13.10 6.66 

2° Angular Error 13.95 8.33 

3° Angular Error 15.14 9.27 

4° Angular Error 17.47 12.23 

No AR 20.19 14.58 

A Hierarchical Linear regression model revealed that, compared to No AR, all AR information significantly 

improved target acquisition times (all p-values < .001). Further, compared to the No AR condition, the increases 

in target acquisition time as range increased were significantly smaller with perfect AR (B = -2.34, p = .003). 

The increases in target acquisition time with increased range observed with the various imperfect AR conditions 

were statistically equivalent to those observed with No AR. In other words, perfect AR protected against the 

impairments in target acquisition normally seen with increased range while there was not sufficient evidence that 

imperfect AR did. Further post-hoc regressions, subsetting the data by range, indicated that all AR conditions 

were a significant improvement over No AR at close range, (all p-values <.001), but that at 4° of angular error 

was no longer a significant improvement  at “Intermediate” (B = -0.98, p = .409) and “Distant” ranges (B = -

1.83, p = .311) over No AR, while 3° of angular error also lacked evidence of improvement at the “Intermediate” 

range (B = -1.89, p = .089) (all p-values for 1° and 2° angular error at all ranges were <.002). 

A second Hierarchical linear regression model, using Perfect AR as the reference group, revealed that 1° (B = -

.28, p = .723) and 2° (B = .572, p = .464) of angular error did not significantly differ from perfect AR, but 3° (B 

= 1.77, p = .024) and 4° (B = 4.09, p < .001) of angular error resulted in significant impairments in target 

acquisition time. Compared to perfect AR, 4° of angular error showed significantly worse increases in target 

acquisition time as range increased (B = 3.71, p<.001). Further post-hoc regressions, subsetting the data by 

range, indicated that there were no significant differences (relative to perfect AR) with any of the four imperfect 
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AR conditions at “Close” or “Intermediate” ranges (all p > .14), and that only the 4° of angular error resulted in 

significantly worse performance than perfect AR at  the “Distant” range (B = 5.15, p < .001). 

Figure 5. Target acquisition time by range and AR condition. Increased range (i.e., distance to the 

target) and increased amounts of angular error increased target acquisition times. Error bars 

represent 95% confidence intervals (based on standard error estimates calculated in the hierarchical 

linear regression models). 

3.2 Target Acquisition Accuracy 

Excluding trials where participants were unable to designate a target within the 60 second time limit, accuracy 

was extremely high for all participants, at each of the three ranges: 100% at the “Close” and “Intermediate” 

ranges, and 99.56% at the “Distant” range. As such, target acquisition accuracy in our experiment almost 

exclusively reflects the ability to identify the target within the 60-second time limit, rather than the ability to 

accurately designate the target in general (i.e., mistakenly designating incorrect targets or errors in correctly 

aligning the targeting reticle).  

A nested model comparison revealed a significant main effect of range on target accuracy X2(1, N = 10) = 54.15, 

p < .001; accuracy was perfect (i.e., 100%) at “Close” and “Intermediate” ranges, while slightly lower (94.99%) 

at the “Distant” range. Likewise, a nested model comparison revealed a significant main effect of AR error 

condition X2(5, N = 10) = 20.57, p < .001; accuracy at the “Distant” range was lowest with No AR (86.1%), 

highest with perfect AR (100%), and increasing amounts of angular error decreased accuracy (see Table 2). 
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Table 2: Mean Accuracy Scores by AR Condition at the “Distant” Range 

AR Error Condition Mean (%) Standard Deviation 

Perfect AR 100.0 0.0 

1° Angular Error 98.8 4.0 

2° Angular Error 96.3 6.0 

3° Angular Error 95.0 12.1 

4° Angular Error 93.8 8.8 

No AR 86.1 15.3 

Performance on trials with Perfect AR was invariant (i.e., perfect), causing computational issues for the planned 

logistical regression techniques, so performance on these trials was omitted. A hierarchical linear regression 

model, subsetting the data to analyse trials at the “Distant” range and using No AR trials as the reference group, 

revealed significant improvements in target acquisition accuracy for all imperfect AR groups (all p-values < 

.001). As performance was highest in the Perfect AR condition, logic dictates that these differences can be 

viewed as “significant,” despite their exclusion from the model. A second regression, comparing performance on 

imperfect AR trials to Perfect AR was not conducted due to the invariance in the Perfect AR condition.  

3.3 Qualitative User Feedback 

While not a formal outcome of interest, participants expressed two concerns regarding the simulation during 

informal conversations following the experiment: 1) the sensor rotation speed was “too slow” at the “Close” 

range and 2) they disliked the deletion of the sensor’s azimuth heading, as they reported it could be 

disorienting to search through a large ring of potential targets without one (see section 2.1). We address the 

implications of this feedback in the Discussion section. 

4.0 DISCUSSION 

Our experimental approach and results represent an early exploration into the ability to simulate the effects of 

AR inaccuracies on military task performance, in this case visual search and target acquisition. They provide an 

experimental template for formally investigating the effects of AR information on human performance before a 

physical prototype is even complete, and demonstrate our intended approach to systematically simulating AR 

information for a variety of applications related to electro-optical and infrared sensors and head-mounted 

displays. In addition to contributing to a general understanding of AR and human performance, our goal is to 

leverage our simulation capabilities to eventually define sensor- and task-specific AR capabilities required to 

improve human performance. This work marks a significant step towards that goal, as we have linked our AR 

target acquisition testbed to our existing simulation capabilities in NV-IG; it is straightforward to change the 

properties of the sensor being studied, as well as the location and nature of displayed targets within NV-IG. 

While the simulation presented here is still being improved, partially in response to participant feedback as 

discussed below, we were able to show statistically significant changes in target acquisition time based on the 

observer’s distance to the target and on the quality of the AR information provided to the Soldiers with a sample 

size of only 10 participants. Our results further indicate that incremental degradations in the accuracy of AR 

information incrementally affect target acquisition performance and that greater AR accuracy is needed in order 

to improve performance as range increases. These conclusions concur with NVESD’s previous AR visual search 

simulations using static images, as opposed to the more interactive search environment presented to participants 
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in this study [12]. 

One of the most important aspects of an AR simulation is the cognitive dimension of fidelity (i.e., people must 

use the AR and sensor information to complete a task in a way that corresponds to reality). Feedback from our 

pilot participants suggested that the cognitive fidelity of our experiment could be improved for future 

simulations. The decision to remove the sensor azimuth heading (in order to prevent participants from learning 

the location of the targets) changed the way the participants completed the task. Many sensors, including the 

LRAS3, include an azimuth heading which helps the Soldier maintain situational awareness while scanning for 

targets. Participants in our simulation reported disorientation as a result of the deleted azimuth heading, perhaps 

increasing their disorientation compared to what an LRAS3 operator would experience under real operational 

circumstances. To address this concern, we reintroduced the sensor azimuth heading for future simulations and 

instead randomly placed the targets within counterbalanced sections of the arc of potential targets; this allowed 

us to control target location across trials containing different types of AR information while still preventing 

participants from learning target locations. 

Soldiers also commented on the slow rotation speed of the sensor at the closest range (the absolute rotational 

speed was the same for all ranges, but is perceived as slower at closer ranges). While this speed allowed for 

proper target acquisition at the “Distant” range, it was annoying to participants and may have changed the 

cognitive strategy best suited for the task. Indeed, it is possible that the sensor rotated so slowly that participants 

were able to view each possible target clearly while rotating towards the AR symbology; this would minimize 

the detriments of minor AR inaccuracies, as participants would gain substantial benefit by simply being pointed 

in the correct general direction to scan. To address these issues in future simulations, we altered the spin rate as a 

function of the sensor’s FOV so that the sensor rotates faster in general, but slows down when the optical zoom 

is engaged. This allows for accurate reticle alignment and target acquisition at long ranges while accelerating 

sensor rotation at closer ranges. Ultimately, we decided the cognitive process we wanted to simulate consisted of 

the operator receiving spatial information by an AR beacon, orienting quickly to that target, and then struggling 

to find the target due to AR angular error. To better mimic this cognitive process in our simulation (i.e., increase 

cognitive fidelity), we added a speed acceleration button for our future simulations. Participants can now orient 

faster to AR symbology while scanning a larger field of view. This will make the target acquisition times 

recorded in our future simulations more purely reflective of time spent searching following an AR mistake, 

rather than a slowly rotating sensor. 

In addition to range, other possible variables unexplored in the present study may affect AR reliability 

requirements. For example, the amount of visual searching required when AR is inaccurate depends on the 

density of potential targets and the amount visual clutter present (e.g., buildings, vegetation, etc.). Both target 

density and visual clutter are variables of interest for our future simulations, as AR accuracy requirements may 

change as a function of both: greater precision may be needed with greater target density and clutter, but errors 

may be more tolerable with only a few potential targets to scan or in clutter-free environments.   

Finally, we should note the statistical analysis presented here could also potentially be improved by utilizing a 

more complicated analysis technique, such as a hierarchical linear regression modelling approach that predicts 

aided performance relative to unaided performance in a single regression [12], as the use of multiple independent 

hypotheses tests and the subsequently employed Bonferroni correction effectively reduces statistical power. A 

larger sample size for future simulations will also aide in providing clear evidence of detriments caused by AR. 
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5.0 CONCLUSION 

This paper presents our ongoing simulation efforts to study human performance with imperfect AR information. 

Our current work demonstrates a method of simulating human performance with virtual AR information, which 

can be applied to a variety of tasks. Our successful collection of preliminary data via simulation marks a major 

step towards our goal of being able to define sensor- and task-specific AR requirements through simulation. The 

results of this study demonstrate the effect of angular error on target acquisition performance depends on both 

the amount of angular error present and the range to the target. As our simulation iteratively improves and we 

collect data from additional participants, greater measurement specificity will be achieved. NVESD will 

continue researching human performance with AR through simulation to support the development of electro-

optical and infrared sensors. 
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